Backlund transformations for the Nizhnik-Novikov-Veselov equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 375667
(http://iopscience.iop.org/0305-4470/37/21/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 18:03

Please note that terms and conditions apply.

Backlund transformations for the Nizhnik-Novikov-Veselov equation

V E Vekslerchik
Institute for Radiophysics and Electronics, Kharkov, Ukraine
and
Universidad de Castilla-La Mancha, Ciudad Real, Spain

Received 25 April 2003
Published 12 May 2004
Online at stacks.iop.org/JPhysA/37/5667
DOI: 10.1088/0305-4470/37/21/012

Abstract

The Backlund transformations for the Nizhnik-Novikov-Veselov equation are presented. It is shown that these transformations can be iterated and that the resulting sequence can be described by the Volterra equations. The relationships between the Nizhnik-Novikov-Veselov equation and the Volterra hierarchy are discussed.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

In this paper I want to discuss the Backlund transformations (BTs) for the asymmetric version of the Nizhnik-Novikov-Veselov equation (NNVE) [1-3],

$$
\left\{\begin{array}{l}
0=-p_{t}+p_{x x x}+6(w p)_{x} \tag{1.1}\\
0=p_{x}+w_{y}
\end{array}\right.
$$

The BTs which will be discussed below belong to the class of transformations studied in [4-7]. Contrary to the Backlund-Darboux (or soliton-adding) transformations, they do not possess the superposition property but appear in sequences that can be described by some discrete equations, which turn out to be integrable as well as the original system.

I am going to start with the traditional approach: in section 2, I present a set of relations and prove (in appendix A) that they indeed link different solutions of the NNVE. Then by introducing some additional functions I rewrite these relations as a set of bilinear equations which can be shown to belong to the Volterra hierarchy (VH) (section 3). To demonstrate the relations between the NNVE and the VH, I derive the former from the latter (section 4), i.e. I show that the NNVE can be obtained as a differential consequence of equations of the VH. Finally, I discuss the derived BTs in the framework of the zero curvature representation (section 5).

2. Backlund transformations

In what follows I use instead of p and w from (1.1) the corresponding tau-function. To introduce it we first 'solve' the second equation of (1.1) by presenting p and w as

$$
\begin{equation*}
p=-\lambda_{x y} \quad w=\lambda_{x x} . \tag{2.1}
\end{equation*}
$$

In terms of λ the system (1.1) becomes

$$
\begin{equation*}
\lambda_{t y}-\lambda_{x x x y}-6 \lambda_{x x} \lambda_{x y}=0 \tag{2.2}
\end{equation*}
$$

(here I have omitted a term which does not depend on x and can be eliminated by a symmetry transform). In terms of the function τ given by

$$
\begin{equation*}
\tau=\exp \lambda \tag{2.3}
\end{equation*}
$$

equation (2.2) can be rewritten in the bilinear form

$$
\begin{equation*}
\left(D_{t y}-D_{x x x y}\right) \tau \cdot \tau=0 \tag{2.4}
\end{equation*}
$$

which is the simplest DKP equation, according to the classification of Jimbo and Miwa [8]. Here the symbol D stands for Hirota's bilinear operators
$D_{x}^{m} D_{y}^{n} \cdots a \cdot b=\left.\frac{\partial^{m}}{\partial \xi^{m}} \frac{\partial^{n}}{\partial \eta^{n}} \cdots a(x+\xi, y+\eta, \ldots) b(x-\xi, y-\eta, \ldots)\right|_{\xi=\eta=\cdots=0}$.
Using the tau-function τ and its logarithm λ the central result of the paper (the BT for the NNVE) can be formulated as follows: if two tau-functions, τ and $\hat{\tau}$, are related by

$$
\begin{align*}
& \Lambda_{t}=\Lambda_{x x x}+\Lambda_{x}^{3}+3 \Lambda_{x} M_{x x}+\frac{3}{\Lambda_{x}} \lambda_{x x} \hat{\lambda}_{x x} \tag{2.6}\\
& 0=\lambda_{x y} \hat{\lambda}_{x y}-\Lambda_{x} \tag{2.7}\\
& 0=\lambda_{x x y} \hat{\lambda}_{x y}-\lambda_{x y} \hat{\lambda}_{x x y}+2 \Lambda_{x}^{2}-M_{x x} \tag{2.8}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda=\lambda-\hat{\lambda} \quad M=\lambda+\hat{\lambda} \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda=\ln \tau \quad \hat{\lambda}=\ln \hat{\tau} \tag{2.10}
\end{equation*}
$$

and one of them, say τ, solves (2.4), then the other one, $\hat{\tau}$, is also a solution of (2.4).
Of course, expressions (2.6)-(2.8) are rather cumbersome and, if one wants to prove that (i) this system of three equations for two functions is compatible or that (ii) these relations are indeed BTs, one needs rather lengthy (though not very difficult) calculations. In appendix A, I give a direct proof of the statement (ii). As to the question (i) I will return to it in section 4 when our BT will be reformulated in a more elegant and transparent form.

3. From NNVE to VH

The aim of this section is to show that BT (2.6)-(2.8) can be described by equations from the VH. To do this we need to introduce some quantities which enable us to reformulate the BTs discussed above in a more transparent way. Consider functions $\sigma, \hat{\sigma}$ and $\rho, \hat{\rho}$ defined by

$$
\begin{equation*}
\sigma=-\frac{\tau^{2}}{\hat{\tau}} \lambda_{x y} \quad \hat{\sigma}=-\frac{\hat{\tau}^{2}}{\tau} \hat{\lambda}_{x y} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho=-\frac{\tau^{3}}{\hat{\tau}^{2}}\left(\lambda_{x x y}+\Lambda_{x} \lambda_{x y}\right) \quad \hat{\rho}=\frac{\hat{\tau}^{3}}{\tau^{2}}\left(\hat{\lambda}_{x x y}-\Lambda_{x} \hat{\lambda}_{x y}\right) \tag{3.2}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\sigma \hat{\sigma}=\tau \hat{\tau} \lambda_{x y} \hat{\lambda}_{x y}=\tau \hat{\tau}\left(\ln \frac{\tau}{\hat{\tau}}\right)_{x} \tag{3.3}
\end{equation*}
$$

(I have used (2.7)) one can rewrite the last equation and the definitions of ρ and $\hat{\rho}$ in a similar bilinear way:

$$
\begin{equation*}
D_{x} \sigma \cdot \tau=\rho \hat{\tau} \quad D_{x} \tau \cdot \hat{\tau}=\sigma \hat{\sigma} \quad D_{x} \hat{\tau} \cdot \hat{\sigma}=\tau \hat{\rho} . \tag{3.4}
\end{equation*}
$$

One can also obtain a set of bilinear equations involving y-derivatives. Differentiating (3.1) with respect to y we get

$$
\begin{align*}
& D_{y} \sigma \cdot \hat{\tau}-\tau^{2}=-\tau^{2} \Theta \tag{3.5}\\
& D_{y} \hat{\sigma} \cdot \tau+\hat{\tau}^{2}=-\hat{\tau}^{2} \hat{\Theta} \tag{3.6}
\end{align*}
$$

where

$$
\begin{align*}
& \Theta=\lambda_{x y y}+2 \Lambda_{y} \lambda_{x y}+1 \tag{3.7}\\
& \hat{\Theta}=\hat{\lambda}_{x y y}-2 \Lambda_{y} \hat{\lambda}_{x y}-1 \tag{3.8}
\end{align*}
$$

while equations (3.2) lead to

$$
\begin{align*}
& D_{y} \rho \cdot \tau-\sigma^{2}=-\frac{\tau^{4}}{\hat{\tau}^{2}}\left(\Theta_{x}+\Lambda_{x} \Theta\right) \tag{3.9}\\
& D_{y} \hat{\rho} \cdot \hat{\tau}+\hat{\sigma}^{2}=\frac{\hat{\tau}^{4}}{\tau^{2}}\left(\hat{\Theta}_{x}-\Lambda_{x} \hat{\Theta}\right) \tag{3.10}
\end{align*}
$$

To calculate the quantities Θ and $\hat{\Theta}$ one can obtain, by differentiating (2.7) and (2.8) with respect to y, the following identities:

$$
\begin{align*}
& \hat{\lambda}_{x y} \Theta+\lambda_{x y} \hat{\Theta}=0 \tag{3.11}\\
& \hat{\lambda}_{x y} \Theta_{x}-\hat{\lambda}_{x x y} \Theta-\lambda_{x y} \hat{\Theta}_{x}+\lambda_{x x y} \hat{\Theta}=0 \tag{3.12}
\end{align*}
$$

which give

$$
\begin{equation*}
\left(\frac{\Theta}{\lambda_{x y}}\right)_{x}=0 \quad \text { and } \quad\left(\frac{\hat{\Theta}}{\hat{\lambda}_{x y}}\right)_{x}=0 \tag{3.13}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Theta=\varphi \lambda_{x y} \quad \text { and } \quad \hat{\Theta}=\hat{\varphi} \hat{\lambda}_{x y} \tag{3.14}
\end{equation*}
$$

where φ and $\hat{\varphi}$ are some functions which do not depend on x,

$$
\begin{equation*}
\varphi_{x}=\hat{\varphi}_{x}=0 \tag{3.15}
\end{equation*}
$$

Returning to (3.11) one can conclude that $\hat{\varphi}=-\varphi$. This leads, together with (3.1), to the following result for Θ and $\hat{\Theta}$:

$$
\begin{equation*}
\Theta=-\varphi \frac{\sigma \hat{\tau}}{\tau^{2}} \quad \text { and } \quad \hat{\Theta}=\varphi \frac{\tau \hat{\sigma}}{\hat{\tau}^{2}} . \tag{3.16}
\end{equation*}
$$

Finally, one can rewrite (3.9), (3.5), (3.6) and (3.10) as

$$
\begin{array}{ll}
D_{y} \rho \cdot \tau-\varphi \rho \tau=\sigma^{2} & D_{y} \sigma \cdot \hat{\tau}-\varphi \sigma \hat{\tau}=\tau^{2} \\
D_{y} \tau \cdot \hat{\sigma}-\varphi \tau \hat{\sigma}=\hat{\tau}^{2} & D_{y} \hat{\tau} \cdot \hat{\rho}-\varphi \hat{\tau} \hat{\rho}=\hat{\sigma}^{2} \tag{3.17}
\end{array}
$$

One can clearly see that our six functions form a chain

$$
\begin{equation*}
\hat{\rho} \rightarrow \hat{\sigma} \rightarrow \hat{\tau} \rightarrow \tau \rightarrow \sigma \rightarrow \rho \tag{3.18}
\end{equation*}
$$

Indeed, after introducing the sequence of tau-functions τ_{n},

$$
\begin{array}{ll}
\tau_{1}=\tau & \tau_{0}=\hat{\tau} \exp (\Phi) \\
\tau_{2}=\sigma \exp (-\Phi) & \tau_{-1}=\hat{\sigma} \exp (2 \Phi) \tag{3.19}\\
\tau_{3}=\rho \exp (-2 \Phi) & \tau_{-2}=\hat{\rho} \exp (3 \Phi)
\end{array}
$$

where Φ is an antiderivative of $\varphi / 2$,

$$
\begin{equation*}
\Phi_{y}=\frac{\varphi}{2} \tag{3.20}
\end{equation*}
$$

equations (3.4) and (3.17) become

$$
\begin{equation*}
D_{x} \tau_{n+1} \cdot \tau_{n}=\tau_{n+2} \tau_{n-1} \quad n=-1,0,1 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{y} \tau_{n+1} \cdot \tau_{n-1}=\tau_{n}^{2} \quad n=-1,0,1,2 \tag{3.22}
\end{equation*}
$$

It can be shown that the sequence $\tau_{-2} \rightarrow \cdots \rightarrow \tau_{2}$ can be extended in both directions to infinity: we can introduce functions τ_{n} for $n= \pm 3, \pm 4, \ldots$ in such a way that they will satisfy (3.21) and (3.22),

$$
\begin{equation*}
D_{x} \tau_{n+1} \cdot \tau_{n}=\tau_{n+2} \tau_{n-1} \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{y} \tau_{n+1} \cdot \tau_{n-1}=\tau_{n}^{2} \tag{3.24}
\end{equation*}
$$

for every n (see appendix B).
One can easily recognize in (3.23) the classical Volterra chain written in the bilinear form. Indeed, the quantities u_{n} defined by

$$
\begin{equation*}
u_{n}=\frac{\tau_{n-2} \tau_{n+1}}{\tau_{n-1} \tau_{n}} \tag{3.25}
\end{equation*}
$$

solve the famous Volterra equation

$$
\begin{equation*}
\partial_{x} u_{n}=u_{n}\left(u_{n+1}-u_{n-1}\right) \tag{3.26}
\end{equation*}
$$

(where $\partial_{x}=\partial / \partial x$). As to equations (3.24), they are nothing but the simplest equations of the negative Volterra hierarchy discussed in [9]. Finally, the t-equation (2.6) of our BT is, in the terms of the tau-functions τ_{n}, the third equation of the classical (positive) VH ,

$$
\begin{equation*}
\left(D_{t}-D_{x x x}\right) \tau_{n} \cdot \tau_{n-1}=3 \tau_{n-3} \tau_{n+2} . \tag{3.27}
\end{equation*}
$$

Now let us compare our BTs with the standard ones which can be derived using Hirota's bilinear approach as follows. Denoting the left-hand side of (2.4) by E,

$$
\begin{equation*}
E(\tau)=\left(D_{t y}-D_{x x x y}\right) \tau \cdot \tau \tag{3.28}
\end{equation*}
$$

one can decompose the difference $E(\tau) \tilde{\tau}^{2}-\tau^{2} E(\tilde{\tau})$ as
$E(\tau) \widetilde{\tau}^{2}-\tau^{2} E(\widetilde{\tau})=2 D_{y}\left[\left(D_{t}-D_{x x x}\right) \tau \cdot \widetilde{\tau}\right] \cdot \tau \widetilde{\tau}+6 D_{x}\left(D_{x y} \tau \cdot \widetilde{\tau}\right) \cdot\left(D_{x} \tau \cdot \widetilde{\tau}\right)$.
This implies that, if functions τ and $\tilde{\tau}$ are related by

$$
\begin{cases}\left(D_{t}-D_{x x x}-3 \alpha\right) \tau \cdot \tilde{\tau}=0 & \alpha_{y}=0 \tag{3.30}\\ \left(D_{x y}-\beta D_{x}\right) \tau \cdot \tilde{\tau}=0 & \beta_{x}=0\end{cases}
$$

and $E(\tau)=0$, then $E(\tilde{\tau})=0$ as well, i.e. that system (3.30) describes a BT.
It was noted in the introduction that the BTs of the type discussed in this paper differ essentially from the usual BTs (3.30). This fact manifests itself in many aspects. Usually applications of BTs (3.30) lead from simple solutions to more complicated ones. The most bright example is the following. Let us apply (3.30) to the trivial tau-function $\tau=1$. By solving the corresponding linear equations we come to the tau-function $\tilde{\tau}$ which is a generalization of the one-soliton tau-function that can be obtained, say, by Hirota's method. At the same time the simplest (vacuum) solution of the Volterra equations remains trivial (in the sense that it gives the zero solution of the NVVE) for all the values of n. The same can be said about more complex situations. BTs (3.30) at every step change the structure of solutions (add a soliton), while a shift of the Volterra index, $n \rightarrow n \pm 1$, usually leads to less essential changes. The only known exception is the determinant (Hankel, Wroskian, etc) solutions where the index n is related to the size of the matrix. However, these solutions have not been extended yet to satisfy the negative equations of the VH , so I cannot discuss them in the context of the NVVE.

The relationships between the BTs of both the kinds have been studied for the (1+1)dimensional integrable systems such as the modified KdV or nonlinear Schrödinger equations (see, e.g., book by Newell [10]). In the most transparent way the difference between them can be exposed in the framework of the inverse scattering approach. The soliton-adding BTs similar to (3.30) are related to the Darboux transformations of the associated linear problem: they add zeros to the corresponding scattering data. That is why they are often called BacklundDarboux transformations. Transformations similar to those proposed in this paper, which are described by integrable chains (for example, in the case of the nonlinear Schrödinger equation it is the Toda chain), are of a different kind. They are related to the Schlesinger transformations of the scattering problem and change the asymptotics (monodromy) of the fundamental solutions as functions of the spectral parameter (see, e.g., chapter 5 of [10]). However, the inverse scattering approach for the NVVE is out of the scope of this paper and more elaborate discussion of this question needs further studies.

However, in some cases the relationships between both kinds of transformations are rather transparent. One can show using equations (3.23) and (3.24) that Volterra tau-functions solve (in the case of the proper boundary conditions)

$$
\begin{equation*}
D_{x y} \tau_{n} \cdot \tau_{n-1}+D_{y} \tau_{n+1} \cdot \tau_{n-2}=0 \tag{3.31}
\end{equation*}
$$

Taking this equation together with the third Volterra equation (3.27) one can show that Volterra tau-functions satisfy the system

$$
\left\{\begin{array}{l}
\left(D_{t}-D_{x x x}\right) \tau_{n} \cdot \tau_{n-1}-3 \tau_{n-3} \tau_{n+2}=0 \tag{3.32}\\
D_{x y} \tau_{n} \cdot \tau_{n-1}+D_{y} \tau_{n+1} \cdot \tau_{n-2}=0
\end{array}\right.
$$

which can be reduced to the one similar to (3.30). Indeed, in the three-periodic case

$$
\begin{equation*}
\tau_{n+3}=\tau_{n} \tag{3.33}
\end{equation*}
$$

equations (3.32) become

$$
\left\{\begin{array}{l}
\left(D_{t}-D_{x x x}-3\right) \tau_{n} \cdot \tau_{n-1}=0 \tag{3.34}\\
D_{x y} \tau_{n} \cdot \tau_{n-1}=0
\end{array}\right.
$$

(Note that (i) the VH \rightarrow NVVE correspondence is valid for any solutions of the VH and that (ii) periodic reductions are compatible with the Volterra equations.) Comparing (3.34) with (3.30) one can easily note that (3.34) coincide with (3.30) with $\alpha=1$ and $\beta=0$. So, one can conclude that the BTs described by the three-periodic Volterra equations are a particular case of the classical BTs (3.30). This situation, when Schlesinger transformations turn out to be some special (sometimes singular) cases of the Backlund-Darboux transformations, has been already discussed in the literature (see, e.g., [11, 12]). Of course the calculations presented above cannot give an exhaustive analysis of the relations between these BTs. I repeat, they are restricted to the three-periodic case, when the Volterra chain, I would like to recall, is nothing but a Painleve, namely the PIV, equation which is known to posses a number of peculiar features. Thus, the question of how to construct the BTs described by the VH of the Backlund-Darboux transformations remains to be settled and surely deserves further studies (probably in a more general framework).

4. From VH to NNVE

The way from the VH to the NNVE is more straightforward than the calculations described in the previous sections: one has to write down three equations of the extended VH and show that any of their common solutions also satisfies equations (1.1) or (2.4).

The VH is an infinite set of differential-difference equations compatible with the discrete problem

$$
\begin{equation*}
\psi_{n-1}-\psi_{n}+\zeta u_{n} \psi_{n+1}=0 \quad u_{n}=\frac{\tau_{n-2} \tau_{n+1}}{\tau_{n-1} \tau_{n}} \tag{4.1}
\end{equation*}
$$

The classical (or 'positive') Volterra equations are evolution equations $\partial u_{n} / \partial t_{j}=F_{n}^{(j)}$, two of which have already been written down (see (3.26) and (3.27)). Another type of the Volterra equations, which are non-local and which when taken together form the 'negative' VH, were discussed in [9]. The simplest of them is (3.24). The very important point is the fact that all equations of the extended VH (both the classical and the 'negative' ones) are compatible. So, we can consider them simultaneously as one infinite system. We can think of u_{n} (or τ_{n}) as functions of an infinite number of times, $\tau_{n}=\tau_{n}\left(t_{1}, t_{2}, \ldots, \bar{t}_{1}, \ldots\right)$, where the dependence on $t_{j}\left(\bar{t}_{j}\right)$ is determined by the j th 'positive' ('negative') Volterra equation.

Hereafter I will restrict myself to the finite subsystem of the VH, consisting of the equations mentioned above: the first and the third equations of the 'positive' subhierarchy (the corresponding times will be denoted by x and t) and the first 'negative' equation (with y used instead of \bar{t}_{1}). So, we will deal with the system

$$
\begin{align*}
& D_{x} \tau_{n} \cdot \tau_{n-1}=\tau_{n-2} \tau_{n+1} \tag{4.2}\\
& \left(D_{t}-D_{x x x}\right) \tau_{n} \cdot \tau_{n-1}=3 \tau_{n-3} \tau_{n+2} \tag{4.3}\\
& D_{y} \tau_{n+1} \cdot \tau_{n-1}=\tau_{n}^{2} \tag{4.4}
\end{align*}
$$

and before proceeding further I would like to return to the question of the compatibility of the system (2.6)-(2.8). It turns out that we do not need to prove this fact separately: system (2.6)-(2.8) is equivalent to (4.2)-(4.4) which is a part of the VH, while consistency of the
latter has already been established (compatibility of equations of an integrable hierarchy, or commutativity of the corresponding flows, is one of the ingredients of its integrability).

The main result of this section, the transition from the VH to NNVE, can be achieved by the following simple calculations. Returning from Hirota's bilinear differential operators to usual ones, one can present equation (4.3) with the help of (4.2) as

$$
\begin{equation*}
\left(\partial_{t}-\partial_{x x x}\right) \ln \frac{\tau_{n}}{\tau_{n-1}}=3 u_{n+1} u_{n} u_{n-1}+3 u_{n+1} u_{n}^{2}+3 u_{n}^{2} u_{n-1}+u_{n}^{3} \tag{4.5}
\end{equation*}
$$

which gives for the quantity p_{n},

$$
\begin{equation*}
p_{n}=\frac{\tau_{n-1} \tau_{n+1}}{\tau_{n}^{2}} \tag{4.6}
\end{equation*}
$$

the identity

$$
\begin{equation*}
\left(\partial_{t}-\partial_{x x x}\right) p_{n}=6 \partial_{x}\left(w_{n} p_{n}\right) \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{n}=\frac{\tau_{n-2} \tau_{n+2}}{\tau_{n}^{2}}=u_{n} u_{n+1} \tag{4.8}
\end{equation*}
$$

On the other hand, (4.4) leads to

$$
\begin{equation*}
\partial_{y} w_{n}=p_{n}\left(u_{n}-u_{n+1}\right) . \tag{4.9}
\end{equation*}
$$

Applying (4.2) again one can easily show that the right-hand side of the last equation is nothing but $-\partial_{x} p_{n}$. So

$$
\begin{equation*}
\partial_{y} w_{n}+\partial_{x} p_{n}=0 \tag{4.10}
\end{equation*}
$$

Comparing (4.7) and (4.10) with (1.1) one can see that for any n functions p_{n} and w_{n} solve the NNVE.

Using the fact that $w_{n}=\partial_{x x} \ln \tau_{n}$ and $p_{n}=-\partial_{x y} \ln \tau_{n}$ (these formulae can be derived from (4.2) and (4.4) after neglecting some unessential constants, which can be incorporated in the definition of τ_{n}) we can reformulate this result as follows: for each n the tau-function of the VH, τ_{n}, is a solution of the bilinear NNVE (2.4). In the context of the NNVE the meaning of the Volterra index n is clear: n is the number of solutions in the sequence of the BTs discussed in the previous section.

5. BTs and zero-curvature representation

So far we have discussed the BTs in terms of solutions of our nonlinear equation only: both (2.6)-(2.8) and (3.30) are expressions which establish some links between different solutions of the NNVE. However, the structure of BTs for nonlinear integrable systems becomes more transparent when expressed in terms of the solutions of auxiliary linear problems. For example the NNVE can be presented as the compatibility condition for the system

$$
\left\{\begin{array}{l}
\varphi_{x y}=2 p \varphi \tag{5.1}\\
\varphi_{t}=\varphi_{x x x}+6 w \varphi_{x}
\end{array}\right.
$$

(the so-called zero-curvature representation) and transform (3.30) $\tau \rightarrow \tilde{\tau}$ with $\beta=0$,

$$
\begin{equation*}
D_{x y} \tau \cdot \tilde{\tau}=0 \tag{5.2}
\end{equation*}
$$

leads to the following transformation of φ

$$
\varphi \rightarrow \widetilde{\varphi}:\left\{\begin{array}{l}
\tilde{\varphi}_{x}-\Lambda_{x} \widetilde{\varphi}=-\varphi_{x}-\Lambda_{x} \varphi \tag{5.3}\\
\widetilde{\varphi}_{y}-\Lambda_{y} \widetilde{\varphi}=\varphi_{y}+\Lambda_{y} \varphi
\end{array} \quad \Lambda=\ln \frac{\tau}{\widetilde{\tau}}\right.
$$

(these transformations are known as Loewner transformations [13] and were discussed, e.g., in $[14,15])$. I cannot present simple formulae for the Volterra sequence of the BTs in the framework of the auxiliary problem (5.1). It turns out that to describe the BTs of this paper it is more convenient to use another linear problem associated with the NNVE which can be derived from the zero-curvature representation of the VH.

It can be shown that the evolution of the functions ψ_{n} from with respect to the flows described by (4.2)-(4.4) can be written as

$$
\begin{align*}
& \partial_{x} \psi_{n}=u_{n}\left(\psi_{n+1}-\psi_{n}\right) \tag{5.4}\\
& \partial_{y} \psi_{n}=\frac{1}{p_{n-1}}\left(\psi_{n-1}-\psi_{n}\right) \tag{5.5}\\
& \partial_{t} \psi_{n}=u_{n} u_{n+1} u_{n+2} \psi_{n+3}+\alpha_{n} \psi_{n+2}+\beta_{n} \psi_{n+1}+\gamma_{n} \psi_{n} \tag{5.6}
\end{align*}
$$

where u_{n} and p_{n} are defined in (3.25) and (4.6), while α_{n}, β_{n} and γ_{n} are some coefficients not written here explicitly. Equations (5.4) and (5.5) lead to

$$
\begin{equation*}
\partial_{x y} \psi_{n}=p_{n}\left(-\psi_{n-1}+2 \psi_{n}-\psi_{n+1}\right) \tag{5.7}
\end{equation*}
$$

which can be transformed to

$$
\begin{equation*}
\partial_{x y} \psi_{n}+\frac{1}{p_{n-1}} \partial_{x} \psi_{n}+u_{n} \partial_{y} \psi_{n}=0 \tag{5.8}
\end{equation*}
$$

At the same time equation (5.6) can be presented as

$$
\begin{equation*}
\partial_{t} \psi_{n}=\partial_{x x x} \psi_{n}+3\left(u_{n-1}+u_{n}\right) \partial_{x x} \psi_{n}+3\left[\left(u_{n-1}+u_{n}\right)^{2}+w_{n}\right] \partial_{x} \psi_{n} \tag{5.9}
\end{equation*}
$$

where $w_{n}=u_{n} u_{n+1}$ (see (4.8)). Note that the last two equations can be rewritten in the 'one-site' form

$$
\begin{align*}
& \partial_{x y} \psi_{n}=\mu_{n} \partial_{x} \psi_{n}+v_{n} \partial_{y} \psi_{n} \tag{5.10}\\
& \partial_{t} \psi_{n}=\partial_{x x x} \psi_{n}+3 a_{n} \partial_{x x} \psi_{n}+3\left(a_{n}^{2}+w_{n}\right) \partial_{x} \psi_{n} \tag{5.11}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{n}=\frac{\partial_{y} h_{n}}{h_{n}} \quad v_{n}=\frac{\partial_{x y} h_{n}}{2 \partial_{y} h_{n}} \quad a_{n}=-\frac{\partial_{x} h_{n}}{h_{n}} \tag{5.12}
\end{equation*}
$$

with

$$
\begin{equation*}
h_{n}=\frac{\tau_{n-2}}{\tau_{n}} . \tag{5.13}
\end{equation*}
$$

Equations (5.10) and (5.11) can be used as a zero-curvature representation of the NNVE, different from the traditional one given by (5.1). Indeed, one can check by straightforward calculations that the compatibility condition for the system

$$
\begin{align*}
& \psi_{x y}=\mu \psi_{x}+\nu \psi_{y} \tag{5.14}\\
& \psi_{t}=\psi_{x x x}+3 a \psi_{x x}+3\left(a^{2}+w\right) \psi_{x} \tag{5.15}
\end{align*}
$$

where

$$
\begin{equation*}
\mu=\frac{h_{y}}{h} \quad v=\frac{h_{x y}}{2 h_{y}} \quad a=-\frac{h_{x}}{h} \tag{5.16}
\end{equation*}
$$

can be reduced to the system (1.1) for the quantities w and $p=\mu \nu$.

In terms of this zero-curvature representation it is clearly seen that the Volterra sequence of BTs discussed in this paper can be constructed by means of rising/lowering operators $\psi_{n} \rightarrow \psi_{n \pm 1}$ given by (5.4) and (5.5):

$$
\begin{align*}
\psi_{n+1} & =\left(\frac{1}{u_{n}} \partial_{x}+1\right) \psi_{n} \tag{5.17}\\
\psi_{n-1} & =\left(p_{n-1} \partial_{y}+1\right) \psi_{n} \tag{5.18}
\end{align*}
$$

Thus our sequence of BTs for the NNVE is generated by the iteration of the Laplace-Darboux transformations for the linear problem (5.14) and (5.15).

6. Conclusion

In this paper I have derived the BTs for the NNVE and have shown that these BTs can be iterated and that the resulting sequence can be described by the Volterra equations. The same result can be reformulated in a more general way: the NNVE can be embedded in the extended Volterra hierarchy by presenting it as a result of the combined action of the Volterra flows.

At the end I want to give the following remark. Among the three Volterra flows we used there were two 'positive' ones, $\partial / \partial t_{1}$ and $\partial / \partial t_{3}$. So, an interesting question is about the role of the 'skipped' second Volterra flow, $\partial / \partial t_{2}$. In terms of the NNVE, $\partial / \partial t_{2}$ can be viewed as some nonlocal symmetry. This symmetry could be used to derive the BTs, but I preferred the more standard approach of introducing additional tau-functions (σ, ρ, \ldots) instead of introducing additional independent variables (t_{2} and others). However, it should be noted that the second strategy is already known and had been shown, say, in [16] to be rather useful in a wide range of situations. The question of t_{2}-dependence is also interesting because it leads us to the Kadomtsev-Petviashvili (KP) equation. Indeed, it can be shown that any tau-function τ_{n} of the Volterra hierarchy also solves

$$
\begin{equation*}
\left(4 D_{1} D_{3}-3 D_{2}^{2}-D_{1}^{4}\right) \tau_{n} \cdot \tau_{n}=0 \tag{6.1}
\end{equation*}
$$

where D_{j} are the Hirota operators corresponding to t_{j}, which means that τ_{n} is a tau-function of the KP equation as well (or, in other words, that the KP equation can be embedded in the VH). So, the NNVE can be considered as a (nonlocal) symmetry of the KP equation. This fact can enlarge the area of application of the former and clarify its place among other integrable partial differential equations.

Acknowledgments

I wish to thank A V Mikhailov for helpful advice and comments. This work is supported by Ministerio de Educación, Cultura y Deporte of Spain under grant SAB2000-0256.

Appendix A

A proof of the fact that equations (2.6)-(2.8) are indeed the BTs can be given as follows. For the quantity E defined by (3.28),

$$
\begin{equation*}
E(\tau)=\left(D_{t y}-D_{x x x y}\right) \tau \cdot \tau \tag{A.1}
\end{equation*}
$$

one can get, using explicit expressions for Hirota's bilinear operators, that

$$
\begin{equation*}
\frac{E(\tau)}{6 \tau^{2}}-\frac{E(\hat{\tau})}{6 \hat{\tau}^{2}}=\frac{1}{3} \Lambda_{t y}-\frac{1}{3} \Lambda_{x x x y}-\Lambda_{x y} M_{x x}-\Lambda_{x x} M_{x y} . \tag{A.2}
\end{equation*}
$$

Substitution of Λ_{t} from (2.6) gives

$$
\begin{equation*}
\frac{E(\tau)}{6 \tau^{2}}-\frac{E(\hat{\tau})}{6 \hat{\tau}^{2}}=\left(\frac{\lambda_{x x} \hat{\lambda}_{x x}}{\Lambda_{x}}\right)_{y}+\Lambda_{x} M_{x x y}-\Lambda_{x x} M_{x y}+\Lambda_{x}^{2} \Lambda_{x y} \tag{A.3}
\end{equation*}
$$

To proceed further we derive from (2.7) and (2.8) expressions for $\lambda_{x x y}$ and $\hat{\lambda}_{x x y}$. After differentiating with respect to x equation (2.7) becomes

$$
\begin{equation*}
\lambda_{x x y} \hat{\lambda}_{x y}+\lambda_{x y} \hat{\lambda}_{x x y}-\Lambda_{x x}=0 . \tag{A.4}
\end{equation*}
$$

Adding/subtracting (2.8) to/from this identity one can get

$$
\begin{align*}
& 0=\lambda_{x x y} \hat{\lambda}_{x y}+\Lambda_{x}^{2}-\lambda_{x x} \tag{A.5}\\
& 0=\lambda_{x y} \hat{\lambda}_{x x y}-\Lambda_{x}^{2}+\hat{\lambda}_{x x} \tag{A.6}
\end{align*}
$$

which leads, after multiplying (A.5) by $\lambda_{x y}$, (A.6) by $\hat{\lambda}_{x y}$ and using (2.7), to

$$
\begin{align*}
& \Lambda_{x} \lambda_{x x y}=\lambda_{x y}\left(\lambda_{x x}-\Lambda_{x}^{2}\right) \tag{A.7}\\
& \Lambda_{x} \hat{\lambda}_{x x y}=\hat{\lambda}_{x y}\left(\Lambda_{x}^{2}-\hat{\lambda}_{x x}\right) \tag{A.8}
\end{align*}
$$

Now one can calculate $\left(\lambda_{x x} \hat{\lambda}_{x x} / \Lambda_{x}\right)_{y}$:

$$
\begin{align*}
\left(\frac{\lambda_{x x} \hat{\lambda}_{x x}}{\Lambda_{x}}\right)_{y} & =\frac{\lambda_{x x}}{\Lambda_{x}} \hat{\lambda}_{x x y}+\frac{\hat{\lambda}_{x x}}{\Lambda_{x}} \lambda_{x x y}-\frac{\lambda_{x x} \hat{\lambda}_{x x}}{\Lambda_{x}^{2}} \Lambda_{x y} \tag{A.9}\\
& =\frac{\lambda_{x x} \hat{\lambda}_{x y}}{\Lambda_{x}^{2}}\left(\Lambda_{x}^{2}-\hat{\lambda}_{x x}\right)+\frac{\lambda_{x y} \hat{\lambda}_{x x}}{\Lambda_{x}^{2}}\left(\lambda_{x x}-\Lambda_{x}^{2}\right)-\frac{\Lambda_{x y}}{\Lambda_{x}^{2}} \lambda_{x x} \hat{\lambda}_{x x} \tag{A.10}\\
& =\lambda_{x x} \hat{\lambda}_{x y}-\lambda_{x y} \hat{\lambda}_{x x} . \tag{A.11}
\end{align*}
$$

On the other hand, summarizing (A.7) and (A.8) one can get

$$
\begin{align*}
\Lambda_{x} M_{x x y} & =\lambda_{x x} \lambda_{x y}-\hat{\lambda}_{x x} \hat{\lambda}_{x y}-\Lambda_{x}^{2} \Lambda_{x y} \tag{A.12}\\
& =\lambda_{x x}\left(M_{x y}-\hat{\lambda}_{x y}\right)+\hat{\lambda}_{x x}\left(\lambda_{x y}-M_{x y}\right)-\Lambda_{x}^{2} \Lambda_{x y} \tag{A.13}
\end{align*}
$$

which leads to

$$
\begin{equation*}
\Lambda_{x} M_{x x y}-\Lambda_{x x} M_{x y}+\Lambda_{x}^{2} \Lambda_{x y}=\lambda_{x y} \hat{\lambda}_{x x}-\lambda_{x x} \hat{\lambda}_{x y} \tag{A.14}
\end{equation*}
$$

Comparing (A.11) and (A.14) one can conclude that the right-hand side of (A.3) equals zero. This means that

$$
\begin{equation*}
E(\tau)=0 \quad \Rightarrow \quad E(\hat{\tau})=0 \tag{A.15}
\end{equation*}
$$

if τ and $\hat{\tau}$ satisfy (2.6)-(2.8). This completes the proof of the fact that relations (2.6)-(2.8) are indeed a BT for the NNVE.

Appendix B

Here I discuss a proof of the fact that the finite system (3.21), (3.22) can be extended to infinity. Consider first the bilinear quantities V_{n}, \bar{V}_{n} and C_{n} defined by

$$
\begin{align*}
& V_{n}=D_{x} \tau_{n} \cdot \tau_{n-1}-\tau_{n+1} \tau_{n-2} \tag{B.1}\\
& \bar{V}_{n}=D_{y} \tau_{n+1} \cdot \tau_{n-1}-\tau_{n}^{2} \tag{B.2}\\
& C_{n}=\frac{1}{2} D_{x y} \tau_{n} \cdot \tau_{n}+\tau_{n+1} \tau_{n-1} \tag{B.3}
\end{align*}
$$

From the definition of Hirota's operators one can derive by simple algebra the fourth-order identities

$$
\begin{equation*}
\tau_{n} \tau_{n-1} V_{n+1}-\tau_{n+1} \tau_{n} V_{n}-D_{x} \bar{V}_{n} \cdot \tau_{n+1} \tau_{n-1}+\tau_{n-1}^{2} C_{n+1}-\tau_{n+1}^{2} C_{n-1}=0 \tag{B.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{n+1} \tau_{n-1} \bar{V}_{n+1}-\tau_{n+2} \tau_{n} \bar{V}_{n}+D_{y} V_{n+1} \cdot \tau_{n+1} \tau_{n}-\tau_{n}^{2} C_{n+1}+\tau_{n+1}^{2} C_{n}=0 \tag{B.5}
\end{equation*}
$$

which are satisfied by any sequences of τ_{n}. My aim now is to show that if $V_{n}=\bar{V}_{n}=0$ for a sufficiently large number of sequential values of n, then all the V_{n} and \bar{V}_{n} are equal to zero as well. To do that I rewrite (B.4) and (B.5) as

$$
\begin{align*}
& \frac{1}{p_{n}}\left(Y_{n+1}-Y_{n}\right)-\partial_{x} \bar{Y}_{n}+Z_{n+1}-Z_{n-1}=0 \tag{B.6}\\
& u_{n}\left(\bar{Y}_{n+1}-\bar{Y}_{n}\right)+\partial_{x} Y_{n+1}-Z_{n+1}+Z_{n}=0 \tag{B.7}
\end{align*}
$$

where

$$
\begin{equation*}
Y_{n}=\frac{V_{n}}{\tau_{n-1} \tau_{n}} \quad \bar{Y}_{n}=\frac{\bar{V}_{n}}{\tau_{n-1} \tau_{n+1}} \quad Z_{n}=\frac{C_{n}}{\tau_{n}^{2}} \tag{B.8}
\end{equation*}
$$

(I presume that none of τ_{n} are equal to zero) from which it follows that
$\frac{1}{p_{n}}\left(Y_{n+1}-Y_{n}\right)+\partial_{x}\left(Y_{n+1}+Y_{n}\right)=u_{n+1}\left(\bar{Y}_{n}-\bar{Y}_{n+1}\right)+u_{n}\left(\bar{Y}_{n-1}-\bar{Y}_{n}\right)+\partial_{x} \bar{Y}_{n}$
or

$$
\begin{equation*}
\bar{Y}_{n+1}=\operatorname{lin}\left(Y_{n+1}, Y_{n}, \bar{Y}_{n}, \bar{Y}_{n-1}\right) \tag{B.10}
\end{equation*}
$$

where $\operatorname{lin}(\cdots)$ is a linear combination of its arguments (and their derivatives).
Now we can return to the Volterra equations. The finite Volterra system (3.21) and (3.22) can be written as

$$
\begin{equation*}
Y_{0}=Y_{1}=Y_{2}=0 \quad \text { and } \quad \bar{Y}_{-1}=\bar{Y}_{0}=\bar{Y}_{1}=\bar{Y}_{2}=0 \tag{B.11}
\end{equation*}
$$

So, if we define τ_{4} as $\tau_{4}=\left(D_{x} \tau_{3} \cdot \tau_{2}\right) / \tau_{1}$ (which means that $Y_{3}=0$), then by virtue of (B.10) we get $\bar{Y}_{3}=0$. Repeating this procedure we can define an infinite set of τ_{n} in such a way that

$$
\begin{equation*}
Y_{n}=\bar{Y}_{n}=0 \quad \text { for } \quad n \geqslant 0 \tag{B.12}
\end{equation*}
$$

It is also possible to define tau-functions for $n \leqslant-3$ to ensure vanishing of all Y_{n} and \bar{Y}_{n} for $n<0$. This means that these tau-functions will be solutions of the first positive and first negative Volterra equations:

$$
\begin{equation*}
V_{n}=0 \quad \bar{V}_{n}=0 \quad \text { for } \quad n=0, \pm 1, \pm 2, \ldots \tag{B.13}
\end{equation*}
$$

In a similar way one can consider the chains of identities for the bilinear combinations of tau-functions which generate the t-equation (3.27) of the VH.

References

[1] Nizhnik L P 1980 Integration of multidimensional nonlinear equations by the method of inverse problem DAN SSSR 254 332-5 (in Russian)
Nizhnik L P 1980 Sov. Phys. Dokl. 25 706-8 (Engl. Transl.)
[2] Veselov A P and Novikov S P 1984 Finite-gap two-dimensional potential Schrödinger operators. Explicit formulae and evolution equations DAN SSSR 279 20-4 (in Russian)
Veselov A P and Novikov S P 1984 Sov. Math. Dokl. 30 588-91 (Engl. Transl.)
[3] Dorfman I Y and Athorne C 1993 On the nonsymmetric Novikov-Veselov hierarchy Phys. Lett. A 182 369-72
[4] Levi D and Benguria R D 1980 Backlund transformations and nonlinear differential difference equations Proc. Natl Acad. Sci. USA 77 5025-7
[5] Levi D 1981 Nonlinear differential-difference equations as Backlund transformations J. Phys. A: Math. Gen. 14 1083-98
[6] Flaschka H 1983 Relations between infinite-dimensional and finite-dimensional isospectral equations Non-linear integrable systems-classical theory and quantum theory Proc. RIMS Symp. (Kyoto, 1981) pp 219-40
[7] Shabat A B and Yamilov R I 1988 Lattice representations of integrable systems Phys. Lett. A 130 271-5
[8] Jimbo M and Miwa T 1983 Solitons and infinite dimensional algebras Publ. RIMS Kyoto University 19 943-1001
[9] Pritula G M and Vekslerchik V E 2003 Negative Volterra flows J. Phys. A: Math. Gen. 36 213-26
[10] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia: SIAM)
[11] Leble S B 2002 Elementary, binary and Schlesinger transformations in differential ring geometry Eur. J. Phys. B 29 189-92
[12] Doliwa Adam, Manas Manuel, Alonso Luis Martinez, Medina Elena and Santini Paolo Maria 1999 Charged free fermions, vertex operators and the classical theory of conjugate nets J. Phys. A: Math. Gen. 32 1197-216
[13] Loewner C 1952 Generation of solutions of systems of partial differential equations by composition of infinitesimal Backlund transformations J. Anal. Math. 2 219-42
[14] Konopelchenko B and Rogers C 1993 On generalized Loewner systems: novel integrable equations in 2+1-dimensions J. Math. Phys. 34 214-42
[15] Schief W K and Rogers C 1998 Loewner transformations: adjoint and binary Darboux connections Stud. Appl. Math. 100 391-422
[16] Lambert F, Loris I, Springael J and Willox R 2001 On the Hirota representation of soliton equations with one tau-function J. Phys. Soc. Japan 70 605-8

